首页> 外文OA文献 >Studying the limits of production rate and yield for the volume manufacturing of hollow core photonic band gap fibers
【2h】

Studying the limits of production rate and yield for the volume manufacturing of hollow core photonic band gap fibers

机译:研究空心光子带隙光纤批量生产的生产率和产量极限

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Hollow core photonic band gap fibers have great potential in low latency data transmission and power delivery applications, but they are currently only fabricated in research scale fabrication facilities, with km-scale lengths. To drive cost reduction and volume manufacturing it is essential to be able to upscale the preform size, but before embarking on costly experimental attempts it is useful to apply fluid dynamics models to study how the fiber drawing dynamics would be affected by such a change. In this work we use a fluid dynamics model to virtually draw increasingly longer lengths of the same fiber from preforms of identical length but different diameters. Taking advantage of our fast numerical model we explore the physical dynamics of the draw process. We discover that the draw tension is the key thermodynamic parameter and that an upper length limit exists beyond which undesirable distortions in the microstructure become difficult to control. These mechanisms are identified and possible mitigation methods described which could allow the fabrication of over 200 km fiber from a single preform.
机译:中空光子带隙光纤在低延迟数据传输和功率传输应用中具有巨大潜力,但目前仅在研究规模的制造工厂中制造,其长度为km级。为了推动成本降低和批量生产,必须能够扩大预成型坯的尺寸,但是在进行昂贵的实验之前,应用流体动力学模型来研究这种变化将如何影响纤维拉伸动力学是很有用的。在这项工作中,我们使用流体动力学模型从长度相同但直径不同的预成型坯中实际上抽取出越来越长的相同纤维。利用我们的快速数值模型,我们探索了拉伸过程的物理动力学。我们发现拉伸张力是关键的热力学参数,并且存在长度上限,超过该上限,难以控制微结构中的不良变形。确定了这些机制并描述了可能的缓解方法,这些方法可允许从单个预成型件制造200多公里的光纤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号